This paper provides a general equilibrium approach to pricing volatility. Existing models (e.g., ARCH/GARCH, stochastic volatility) take a statistical approach to estimating volatility, volatility indices (e.g., CBOE VIX) use a weighted combination of options, and utility based models assume a specific type of preferences. In contrast we treat volatility as an asset and price it using the general equilibrium state pricing framework. Our results show that the general equilibrium volatility method developed in this paper provides superior forecasting ability for realized volatility and serves as an effective fear gauge.