We extend the hybrid scheme of Gatheral (2022) and apply the finite difference methodology of Bourgey et al. (2024) to compute the skew-stickiness ratio (SSR) under quadratic rough Heston. We find that the quadratic rough Heston model not only provides good joint fits to both SPX and VIX volatility smiles but also produces credible SSR values, while remaining extremely parsimonious. By examining the historical evolution of the quadratic rough Heston model, and relating it to well-known classical stochastic volatility models, we can begin to understand the underlying reasons for its seemingly unreasonable effectiveness.