• Skip to main content
  • Skip to footer

OptionMetrics

search
  • About Us
    • Who We Serve
    • Why OptionMetrics
    • Leadership
  • Data Products
    • Equities
      • United States
      • Europe
      • Asia
      • Canada
      • ETFs
    • Futures
    • Signed Volume
    • Implied Beta
    • Dividend
      • Implied Dividend
      • Dividend Forecasting
  • Research
  • Blog
  • News & Events
  • Careers
  • Contact

D. Zheng, H. Guo, Y. Liu, and W. Huang: Neural Jumps for Option Pricing

June 26, 2025

Recognizing the importance of jump risk in option pricing, we propose a neural jump stochastic differential equation model in this paper, which integrates neural networks as parameter estimators in the conventional jump diffusion model. To overcome the problem that the backpropagation algorithm is not compatible with the jump process, we use the Gumbel-Softmax method to make the jump parameter gradient learnable. We examine the proposed model using both simulated data and S&P 500 index options. The findings demonstrate that the incorporation of neural jump components substantially improves the accuracy of pricing compared to existing benchmark models.

Download

Share this post:
  • Facebook
  • Pinterest
  • Twitter
  • Linkedin
OptionMetrics Logo
  • About Us
  • Who We Serve
  • Why OptionMetrics
  • Leadership
  • Data Products
  • Equities
  • Futures
  • Signed Volume
  • Implied Beta
  • Dividend
  • Research
  • Blog
  • News & Events
  • Careers
  • Contact Us
  • Support Request
Stay Connected

dashicons-linkedin dashicons-twitter dashicons-facebook-alt

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply

© 2025 OptionMetrics, LLC. All Rights Reserved. | Privacy Policy | Terms of Use | Accessibility | Site Map